Solve for t
t = \frac{20}{17} = 1\frac{3}{17} \approx 1.176470588
t=0
Quiz
Polynomial
5 problems similar to:
\frac { 37 } { 5 } t ^ { 2 } - 44 t + 100 = ( 10 - 2 t ) ^ { 2 }
Share
Copied to clipboard
\frac{37}{5}t^{2}-44t+100=100-40t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2t\right)^{2}.
\frac{37}{5}t^{2}-44t+100-100=-40t+4t^{2}
Subtract 100 from both sides.
\frac{37}{5}t^{2}-44t=-40t+4t^{2}
Subtract 100 from 100 to get 0.
\frac{37}{5}t^{2}-44t+40t=4t^{2}
Add 40t to both sides.
\frac{37}{5}t^{2}-4t=4t^{2}
Combine -44t and 40t to get -4t.
\frac{37}{5}t^{2}-4t-4t^{2}=0
Subtract 4t^{2} from both sides.
\frac{17}{5}t^{2}-4t=0
Combine \frac{37}{5}t^{2} and -4t^{2} to get \frac{17}{5}t^{2}.
t\left(\frac{17}{5}t-4\right)=0
Factor out t.
t=0 t=\frac{20}{17}
To find equation solutions, solve t=0 and \frac{17t}{5}-4=0.
\frac{37}{5}t^{2}-44t+100=100-40t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2t\right)^{2}.
\frac{37}{5}t^{2}-44t+100-100=-40t+4t^{2}
Subtract 100 from both sides.
\frac{37}{5}t^{2}-44t=-40t+4t^{2}
Subtract 100 from 100 to get 0.
\frac{37}{5}t^{2}-44t+40t=4t^{2}
Add 40t to both sides.
\frac{37}{5}t^{2}-4t=4t^{2}
Combine -44t and 40t to get -4t.
\frac{37}{5}t^{2}-4t-4t^{2}=0
Subtract 4t^{2} from both sides.
\frac{17}{5}t^{2}-4t=0
Combine \frac{37}{5}t^{2} and -4t^{2} to get \frac{17}{5}t^{2}.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times \frac{17}{5}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{5} for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4\right)±4}{2\times \frac{17}{5}}
Take the square root of \left(-4\right)^{2}.
t=\frac{4±4}{2\times \frac{17}{5}}
The opposite of -4 is 4.
t=\frac{4±4}{\frac{34}{5}}
Multiply 2 times \frac{17}{5}.
t=\frac{8}{\frac{34}{5}}
Now solve the equation t=\frac{4±4}{\frac{34}{5}} when ± is plus. Add 4 to 4.
t=\frac{20}{17}
Divide 8 by \frac{34}{5} by multiplying 8 by the reciprocal of \frac{34}{5}.
t=\frac{0}{\frac{34}{5}}
Now solve the equation t=\frac{4±4}{\frac{34}{5}} when ± is minus. Subtract 4 from 4.
t=0
Divide 0 by \frac{34}{5} by multiplying 0 by the reciprocal of \frac{34}{5}.
t=\frac{20}{17} t=0
The equation is now solved.
\frac{37}{5}t^{2}-44t+100=100-40t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2t\right)^{2}.
\frac{37}{5}t^{2}-44t+100+40t=100+4t^{2}
Add 40t to both sides.
\frac{37}{5}t^{2}-4t+100=100+4t^{2}
Combine -44t and 40t to get -4t.
\frac{37}{5}t^{2}-4t+100-4t^{2}=100
Subtract 4t^{2} from both sides.
\frac{17}{5}t^{2}-4t+100=100
Combine \frac{37}{5}t^{2} and -4t^{2} to get \frac{17}{5}t^{2}.
\frac{17}{5}t^{2}-4t=100-100
Subtract 100 from both sides.
\frac{17}{5}t^{2}-4t=0
Subtract 100 from 100 to get 0.
\frac{\frac{17}{5}t^{2}-4t}{\frac{17}{5}}=\frac{0}{\frac{17}{5}}
Divide both sides of the equation by \frac{17}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{4}{\frac{17}{5}}\right)t=\frac{0}{\frac{17}{5}}
Dividing by \frac{17}{5} undoes the multiplication by \frac{17}{5}.
t^{2}-\frac{20}{17}t=\frac{0}{\frac{17}{5}}
Divide -4 by \frac{17}{5} by multiplying -4 by the reciprocal of \frac{17}{5}.
t^{2}-\frac{20}{17}t=0
Divide 0 by \frac{17}{5} by multiplying 0 by the reciprocal of \frac{17}{5}.
t^{2}-\frac{20}{17}t+\left(-\frac{10}{17}\right)^{2}=\left(-\frac{10}{17}\right)^{2}
Divide -\frac{20}{17}, the coefficient of the x term, by 2 to get -\frac{10}{17}. Then add the square of -\frac{10}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{20}{17}t+\frac{100}{289}=\frac{100}{289}
Square -\frac{10}{17} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{10}{17}\right)^{2}=\frac{100}{289}
Factor t^{2}-\frac{20}{17}t+\frac{100}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10}{17}\right)^{2}}=\sqrt{\frac{100}{289}}
Take the square root of both sides of the equation.
t-\frac{10}{17}=\frac{10}{17} t-\frac{10}{17}=-\frac{10}{17}
Simplify.
t=\frac{20}{17} t=0
Add \frac{10}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}