Evaluate
\frac{366}{29}\approx 12.620689655
Factor
\frac{2 \cdot 3 \cdot 61}{29} = 12\frac{18}{29} = 12.620689655172415
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)366}\\\end{array}
Use the 1^{st} digit 3 from dividend 366
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)366}\\\end{array}
Since 3 is less than 29, use the next digit 6 from dividend 366 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)366}\\\end{array}
Use the 2^{nd} digit 6 from dividend 366
\begin{array}{l}\phantom{29)}01\phantom{4}\\29\overline{)366}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)9}7\\\end{array}
Find closest multiple of 29 to 36. We see that 1 \times 29 = 29 is the nearest. Now subtract 29 from 36 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{29)}01\phantom{5}\\29\overline{)366}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)9}76\\\end{array}
Use the 3^{rd} digit 6 from dividend 366
\begin{array}{l}\phantom{29)}012\phantom{6}\\29\overline{)366}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)9}76\\\phantom{29)}\underline{\phantom{9}58\phantom{}}\\\phantom{29)9}18\\\end{array}
Find closest multiple of 29 to 76. We see that 2 \times 29 = 58 is the nearest. Now subtract 58 from 76 to get reminder 18. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }18
Since 18 is less than 29, stop the division. The reminder is 18. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}