Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)360}\\\end{array}
Since 3 is less than 24, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)360}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}12\\\end{array}
Find closest multiple of 24 to 36. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 36 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)360}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{24)}015\phantom{6}\\24\overline{)360}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}120\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)999}0\\\end{array}
Find closest multiple of 24 to 120. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 120 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 24, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}