Evaluate
\frac{24}{13}\approx 1.846153846
Factor
\frac{2 ^ {3} \cdot 3}{13} = 1\frac{11}{13} = 1.8461538461538463
Share
Copied to clipboard
\begin{array}{l}\phantom{195)}\phantom{1}\\195\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{195)}0\phantom{2}\\195\overline{)360}\\\end{array}
Since 3 is less than 195, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{195)}0\phantom{3}\\195\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{195)}00\phantom{4}\\195\overline{)360}\\\end{array}
Since 36 is less than 195, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{195)}00\phantom{5}\\195\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{195)}001\phantom{6}\\195\overline{)360}\\\phantom{195)}\underline{\phantom{}195\phantom{}}\\\phantom{195)}165\\\end{array}
Find closest multiple of 195 to 360. We see that 1 \times 195 = 195 is the nearest. Now subtract 195 from 360 to get reminder 165. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }165
Since 165 is less than 195, stop the division. The reminder is 165. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}