Solve for x
x=7
Graph
Share
Copied to clipboard
36-\left(2+x\right)\left(2+x\right)=-\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,2-x.
36-\left(2+x\right)^{2}=-\left(x-2\right)\left(x+2\right)
Multiply 2+x and 2+x to get \left(2+x\right)^{2}.
36-\left(4+4x+x^{2}\right)=-\left(x-2\right)\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
36-4-4x-x^{2}=-\left(x-2\right)\left(x+2\right)
To find the opposite of 4+4x+x^{2}, find the opposite of each term.
32-4x-x^{2}=-\left(x-2\right)\left(x+2\right)
Subtract 4 from 36 to get 32.
32-4x-x^{2}=\left(-x+2\right)\left(x+2\right)
Use the distributive property to multiply -1 by x-2.
32-4x-x^{2}=-x^{2}+4
Use the distributive property to multiply -x+2 by x+2 and combine like terms.
32-4x-x^{2}+x^{2}=4
Add x^{2} to both sides.
32-4x=4
Combine -x^{2} and x^{2} to get 0.
-4x=4-32
Subtract 32 from both sides.
-4x=-28
Subtract 32 from 4 to get -28.
x=\frac{-28}{-4}
Divide both sides by -4.
x=7
Divide -28 by -4 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}