Solve for x
x=\frac{9y}{31}
y\neq 0
Solve for y
y=\frac{31x}{9}
x\neq 0
Graph
Share
Copied to clipboard
y\times 36=124x
Multiply both sides of the equation by 124y, the least common multiple of 124,y.
124x=y\times 36
Swap sides so that all variable terms are on the left hand side.
124x=36y
The equation is in standard form.
\frac{124x}{124}=\frac{36y}{124}
Divide both sides by 124.
x=\frac{36y}{124}
Dividing by 124 undoes the multiplication by 124.
x=\frac{9y}{31}
Divide 36y by 124.
y\times 36=124x
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 124y, the least common multiple of 124,y.
36y=124x
The equation is in standard form.
\frac{36y}{36}=\frac{124x}{36}
Divide both sides by 36.
y=\frac{124x}{36}
Dividing by 36 undoes the multiplication by 36.
y=\frac{31x}{9}
Divide 124x by 36.
y=\frac{31x}{9}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}