Evaluate
\frac{358}{79}\approx 4.53164557
Factor
\frac{2 \cdot 179}{79} = 4\frac{42}{79} = 4.531645569620253
Share
Copied to clipboard
\begin{array}{l}\phantom{79)}\phantom{1}\\79\overline{)358}\\\end{array}
Use the 1^{st} digit 3 from dividend 358
\begin{array}{l}\phantom{79)}0\phantom{2}\\79\overline{)358}\\\end{array}
Since 3 is less than 79, use the next digit 5 from dividend 358 and add 0 to the quotient
\begin{array}{l}\phantom{79)}0\phantom{3}\\79\overline{)358}\\\end{array}
Use the 2^{nd} digit 5 from dividend 358
\begin{array}{l}\phantom{79)}00\phantom{4}\\79\overline{)358}\\\end{array}
Since 35 is less than 79, use the next digit 8 from dividend 358 and add 0 to the quotient
\begin{array}{l}\phantom{79)}00\phantom{5}\\79\overline{)358}\\\end{array}
Use the 3^{rd} digit 8 from dividend 358
\begin{array}{l}\phantom{79)}004\phantom{6}\\79\overline{)358}\\\phantom{79)}\underline{\phantom{}316\phantom{}}\\\phantom{79)9}42\\\end{array}
Find closest multiple of 79 to 358. We see that 4 \times 79 = 316 is the nearest. Now subtract 316 from 358 to get reminder 42. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }42
Since 42 is less than 79, stop the division. The reminder is 42. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}