Evaluate
\frac{8\sqrt{148994}}{3239}\approx 0.953374274
Share
Copied to clipboard
\frac{347-255}{\sqrt{\left(1308-\frac{85^{2}}{8}\right)\left(93-70\right)}}
Multiply 85 and 3 to get 255.
\frac{92}{\sqrt{\left(1308-\frac{85^{2}}{8}\right)\left(93-70\right)}}
Subtract 255 from 347 to get 92.
\frac{92}{\sqrt{\left(1308-\frac{7225}{8}\right)\left(93-70\right)}}
Calculate 85 to the power of 2 and get 7225.
\frac{92}{\sqrt{\left(\frac{10464}{8}-\frac{7225}{8}\right)\left(93-70\right)}}
Convert 1308 to fraction \frac{10464}{8}.
\frac{92}{\sqrt{\frac{10464-7225}{8}\left(93-70\right)}}
Since \frac{10464}{8} and \frac{7225}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{92}{\sqrt{\frac{3239}{8}\left(93-70\right)}}
Subtract 7225 from 10464 to get 3239.
\frac{92}{\sqrt{\frac{3239}{8}\times 23}}
Subtract 70 from 93 to get 23.
\frac{92}{\sqrt{\frac{3239\times 23}{8}}}
Express \frac{3239}{8}\times 23 as a single fraction.
\frac{92}{\sqrt{\frac{74497}{8}}}
Multiply 3239 and 23 to get 74497.
\frac{92}{\frac{\sqrt{74497}}{\sqrt{8}}}
Rewrite the square root of the division \sqrt{\frac{74497}{8}} as the division of square roots \frac{\sqrt{74497}}{\sqrt{8}}.
\frac{92}{\frac{\sqrt{74497}}{2\sqrt{2}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{92}{\frac{\sqrt{74497}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{74497}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{92}{\frac{\sqrt{74497}\sqrt{2}}{2\times 2}}
The square of \sqrt{2} is 2.
\frac{92}{\frac{\sqrt{148994}}{2\times 2}}
To multiply \sqrt{74497} and \sqrt{2}, multiply the numbers under the square root.
\frac{92}{\frac{\sqrt{148994}}{4}}
Multiply 2 and 2 to get 4.
\frac{92\times 4}{\sqrt{148994}}
Divide 92 by \frac{\sqrt{148994}}{4} by multiplying 92 by the reciprocal of \frac{\sqrt{148994}}{4}.
\frac{92\times 4\sqrt{148994}}{\left(\sqrt{148994}\right)^{2}}
Rationalize the denominator of \frac{92\times 4}{\sqrt{148994}} by multiplying numerator and denominator by \sqrt{148994}.
\frac{92\times 4\sqrt{148994}}{148994}
The square of \sqrt{148994} is 148994.
\frac{368\sqrt{148994}}{148994}
Multiply 92 and 4 to get 368.
\frac{8}{3239}\sqrt{148994}
Divide 368\sqrt{148994} by 148994 to get \frac{8}{3239}\sqrt{148994}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}