Evaluate
\frac{34689}{301}\approx 115.245847176
Factor
\frac{3 \cdot 31 \cdot 373}{7 \cdot 43} = 115\frac{74}{301} = 115.24584717607974
Share
Copied to clipboard
\begin{array}{l}\phantom{301)}\phantom{1}\\301\overline{)34689}\\\end{array}
Use the 1^{st} digit 3 from dividend 34689
\begin{array}{l}\phantom{301)}0\phantom{2}\\301\overline{)34689}\\\end{array}
Since 3 is less than 301, use the next digit 4 from dividend 34689 and add 0 to the quotient
\begin{array}{l}\phantom{301)}0\phantom{3}\\301\overline{)34689}\\\end{array}
Use the 2^{nd} digit 4 from dividend 34689
\begin{array}{l}\phantom{301)}00\phantom{4}\\301\overline{)34689}\\\end{array}
Since 34 is less than 301, use the next digit 6 from dividend 34689 and add 0 to the quotient
\begin{array}{l}\phantom{301)}00\phantom{5}\\301\overline{)34689}\\\end{array}
Use the 3^{rd} digit 6 from dividend 34689
\begin{array}{l}\phantom{301)}001\phantom{6}\\301\overline{)34689}\\\phantom{301)}\underline{\phantom{}301\phantom{99}}\\\phantom{301)9}45\\\end{array}
Find closest multiple of 301 to 346. We see that 1 \times 301 = 301 is the nearest. Now subtract 301 from 346 to get reminder 45. Add 1 to quotient.
\begin{array}{l}\phantom{301)}001\phantom{7}\\301\overline{)34689}\\\phantom{301)}\underline{\phantom{}301\phantom{99}}\\\phantom{301)9}458\\\end{array}
Use the 4^{th} digit 8 from dividend 34689
\begin{array}{l}\phantom{301)}0011\phantom{8}\\301\overline{)34689}\\\phantom{301)}\underline{\phantom{}301\phantom{99}}\\\phantom{301)9}458\\\phantom{301)}\underline{\phantom{9}301\phantom{9}}\\\phantom{301)9}157\\\end{array}
Find closest multiple of 301 to 458. We see that 1 \times 301 = 301 is the nearest. Now subtract 301 from 458 to get reminder 157. Add 1 to quotient.
\begin{array}{l}\phantom{301)}0011\phantom{9}\\301\overline{)34689}\\\phantom{301)}\underline{\phantom{}301\phantom{99}}\\\phantom{301)9}458\\\phantom{301)}\underline{\phantom{9}301\phantom{9}}\\\phantom{301)9}1579\\\end{array}
Use the 5^{th} digit 9 from dividend 34689
\begin{array}{l}\phantom{301)}00115\phantom{10}\\301\overline{)34689}\\\phantom{301)}\underline{\phantom{}301\phantom{99}}\\\phantom{301)9}458\\\phantom{301)}\underline{\phantom{9}301\phantom{9}}\\\phantom{301)9}1579\\\phantom{301)}\underline{\phantom{9}1505\phantom{}}\\\phantom{301)999}74\\\end{array}
Find closest multiple of 301 to 1579. We see that 5 \times 301 = 1505 is the nearest. Now subtract 1505 from 1579 to get reminder 74. Add 5 to quotient.
\text{Quotient: }115 \text{Reminder: }74
Since 74 is less than 301, stop the division. The reminder is 74. The topmost line 00115 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 115.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}