Evaluate
\frac{34}{21}\approx 1.619047619
Factor
\frac{2 \cdot 17}{3 \cdot 7} = 1\frac{13}{21} = 1.619047619047619
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)34}\\\end{array}
Use the 1^{st} digit 3 from dividend 34
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)34}\\\end{array}
Since 3 is less than 21, use the next digit 4 from dividend 34 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)34}\\\end{array}
Use the 2^{nd} digit 4 from dividend 34
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)34}\\\phantom{21)}\underline{\phantom{}21\phantom{}}\\\phantom{21)}13\\\end{array}
Find closest multiple of 21 to 34. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 34 to get reminder 13. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }13
Since 13 is less than 21, stop the division. The reminder is 13. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}