Evaluate
\frac{329}{40}=8.225
Factor
\frac{7 \cdot 47}{2 ^ {3} \cdot 5} = 8\frac{9}{40} = 8.225
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)3290}\\\end{array}
Use the 1^{st} digit 3 from dividend 3290
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)3290}\\\end{array}
Since 3 is less than 400, use the next digit 2 from dividend 3290 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)3290}\\\end{array}
Use the 2^{nd} digit 2 from dividend 3290
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)3290}\\\end{array}
Since 32 is less than 400, use the next digit 9 from dividend 3290 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)3290}\\\end{array}
Use the 3^{rd} digit 9 from dividend 3290
\begin{array}{l}\phantom{400)}000\phantom{6}\\400\overline{)3290}\\\end{array}
Since 329 is less than 400, use the next digit 0 from dividend 3290 and add 0 to the quotient
\begin{array}{l}\phantom{400)}000\phantom{7}\\400\overline{)3290}\\\end{array}
Use the 4^{th} digit 0 from dividend 3290
\begin{array}{l}\phantom{400)}0008\phantom{8}\\400\overline{)3290}\\\phantom{400)}\underline{\phantom{}3200\phantom{}}\\\phantom{400)99}90\\\end{array}
Find closest multiple of 400 to 3290. We see that 8 \times 400 = 3200 is the nearest. Now subtract 3200 from 3290 to get reminder 90. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }90
Since 90 is less than 400, stop the division. The reminder is 90. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}