Evaluate
\frac{161}{24}\approx 6.708333333
Factor
\frac{7 \cdot 23}{2 ^ {3} \cdot 3} = 6\frac{17}{24} = 6.708333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)322}\\\end{array}
Use the 1^{st} digit 3 from dividend 322
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)322}\\\end{array}
Since 3 is less than 48, use the next digit 2 from dividend 322 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)322}\\\end{array}
Use the 2^{nd} digit 2 from dividend 322
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)322}\\\end{array}
Since 32 is less than 48, use the next digit 2 from dividend 322 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)322}\\\end{array}
Use the 3^{rd} digit 2 from dividend 322
\begin{array}{l}\phantom{48)}006\phantom{6}\\48\overline{)322}\\\phantom{48)}\underline{\phantom{}288\phantom{}}\\\phantom{48)9}34\\\end{array}
Find closest multiple of 48 to 322. We see that 6 \times 48 = 288 is the nearest. Now subtract 288 from 322 to get reminder 34. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }34
Since 34 is less than 48, stop the division. The reminder is 34. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}