Solve for x
x=-\frac{15y}{32}+\frac{51}{16}
Solve for y
y=-\frac{32x}{15}+\frac{34}{5}
Graph
Share
Copied to clipboard
32x+15y=51\times 2
Multiply both sides by 2.
32x+15y=102
Multiply 51 and 2 to get 102.
32x=102-15y
Subtract 15y from both sides.
\frac{32x}{32}=\frac{102-15y}{32}
Divide both sides by 32.
x=\frac{102-15y}{32}
Dividing by 32 undoes the multiplication by 32.
x=-\frac{15y}{32}+\frac{51}{16}
Divide 102-15y by 32.
32x+15y=51\times 2
Multiply both sides by 2.
32x+15y=102
Multiply 51 and 2 to get 102.
15y=102-32x
Subtract 32x from both sides.
\frac{15y}{15}=\frac{102-32x}{15}
Divide both sides by 15.
y=\frac{102-32x}{15}
Dividing by 15 undoes the multiplication by 15.
y=-\frac{32x}{15}+\frac{34}{5}
Divide 102-32x by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}