Evaluate
\frac{314}{75}\approx 4.186666667
Factor
\frac{2 \cdot 157}{3 \cdot 5 ^ {2}} = 4\frac{14}{75} = 4.1866666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)314}\\\end{array}
Use the 1^{st} digit 3 from dividend 314
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)314}\\\end{array}
Since 3 is less than 75, use the next digit 1 from dividend 314 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)314}\\\end{array}
Use the 2^{nd} digit 1 from dividend 314
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)314}\\\end{array}
Since 31 is less than 75, use the next digit 4 from dividend 314 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)314}\\\end{array}
Use the 3^{rd} digit 4 from dividend 314
\begin{array}{l}\phantom{75)}004\phantom{6}\\75\overline{)314}\\\phantom{75)}\underline{\phantom{}300\phantom{}}\\\phantom{75)9}14\\\end{array}
Find closest multiple of 75 to 314. We see that 4 \times 75 = 300 is the nearest. Now subtract 300 from 314 to get reminder 14. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }14
Since 14 is less than 75, stop the division. The reminder is 14. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}