Evaluate
\frac{1040}{303}\approx 3.432343234
Factor
\frac{2 ^ {4} \cdot 5 \cdot 13}{3 \cdot 101} = 3\frac{131}{303} = 3.432343234323432
Share
Copied to clipboard
\begin{array}{l}\phantom{909)}\phantom{1}\\909\overline{)3120}\\\end{array}
Use the 1^{st} digit 3 from dividend 3120
\begin{array}{l}\phantom{909)}0\phantom{2}\\909\overline{)3120}\\\end{array}
Since 3 is less than 909, use the next digit 1 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{909)}0\phantom{3}\\909\overline{)3120}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3120
\begin{array}{l}\phantom{909)}00\phantom{4}\\909\overline{)3120}\\\end{array}
Since 31 is less than 909, use the next digit 2 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{909)}00\phantom{5}\\909\overline{)3120}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3120
\begin{array}{l}\phantom{909)}000\phantom{6}\\909\overline{)3120}\\\end{array}
Since 312 is less than 909, use the next digit 0 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{909)}000\phantom{7}\\909\overline{)3120}\\\end{array}
Use the 4^{th} digit 0 from dividend 3120
\begin{array}{l}\phantom{909)}0003\phantom{8}\\909\overline{)3120}\\\phantom{909)}\underline{\phantom{}2727\phantom{}}\\\phantom{909)9}393\\\end{array}
Find closest multiple of 909 to 3120. We see that 3 \times 909 = 2727 is the nearest. Now subtract 2727 from 3120 to get reminder 393. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }393
Since 393 is less than 909, stop the division. The reminder is 393. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}