Evaluate
\frac{6208}{47}\approx 132.085106383
Factor
\frac{2 ^ {6} \cdot 97}{47} = 132\frac{4}{47} = 132.08510638297872
Share
Copied to clipboard
\begin{array}{l}\phantom{2350)}\phantom{1}\\2350\overline{)310400}\\\end{array}
Use the 1^{st} digit 3 from dividend 310400
\begin{array}{l}\phantom{2350)}0\phantom{2}\\2350\overline{)310400}\\\end{array}
Since 3 is less than 2350, use the next digit 1 from dividend 310400 and add 0 to the quotient
\begin{array}{l}\phantom{2350)}0\phantom{3}\\2350\overline{)310400}\\\end{array}
Use the 2^{nd} digit 1 from dividend 310400
\begin{array}{l}\phantom{2350)}00\phantom{4}\\2350\overline{)310400}\\\end{array}
Since 31 is less than 2350, use the next digit 0 from dividend 310400 and add 0 to the quotient
\begin{array}{l}\phantom{2350)}00\phantom{5}\\2350\overline{)310400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 310400
\begin{array}{l}\phantom{2350)}000\phantom{6}\\2350\overline{)310400}\\\end{array}
Since 310 is less than 2350, use the next digit 4 from dividend 310400 and add 0 to the quotient
\begin{array}{l}\phantom{2350)}000\phantom{7}\\2350\overline{)310400}\\\end{array}
Use the 4^{th} digit 4 from dividend 310400
\begin{array}{l}\phantom{2350)}0001\phantom{8}\\2350\overline{)310400}\\\phantom{2350)}\underline{\phantom{}2350\phantom{99}}\\\phantom{2350)9}754\\\end{array}
Find closest multiple of 2350 to 3104. We see that 1 \times 2350 = 2350 is the nearest. Now subtract 2350 from 3104 to get reminder 754. Add 1 to quotient.
\begin{array}{l}\phantom{2350)}0001\phantom{9}\\2350\overline{)310400}\\\phantom{2350)}\underline{\phantom{}2350\phantom{99}}\\\phantom{2350)9}7540\\\end{array}
Use the 5^{th} digit 0 from dividend 310400
\begin{array}{l}\phantom{2350)}00013\phantom{10}\\2350\overline{)310400}\\\phantom{2350)}\underline{\phantom{}2350\phantom{99}}\\\phantom{2350)9}7540\\\phantom{2350)}\underline{\phantom{9}7050\phantom{9}}\\\phantom{2350)99}490\\\end{array}
Find closest multiple of 2350 to 7540. We see that 3 \times 2350 = 7050 is the nearest. Now subtract 7050 from 7540 to get reminder 490. Add 3 to quotient.
\begin{array}{l}\phantom{2350)}00013\phantom{11}\\2350\overline{)310400}\\\phantom{2350)}\underline{\phantom{}2350\phantom{99}}\\\phantom{2350)9}7540\\\phantom{2350)}\underline{\phantom{9}7050\phantom{9}}\\\phantom{2350)99}4900\\\end{array}
Use the 6^{th} digit 0 from dividend 310400
\begin{array}{l}\phantom{2350)}000132\phantom{12}\\2350\overline{)310400}\\\phantom{2350)}\underline{\phantom{}2350\phantom{99}}\\\phantom{2350)9}7540\\\phantom{2350)}\underline{\phantom{9}7050\phantom{9}}\\\phantom{2350)99}4900\\\phantom{2350)}\underline{\phantom{99}4700\phantom{}}\\\phantom{2350)999}200\\\end{array}
Find closest multiple of 2350 to 4900. We see that 2 \times 2350 = 4700 is the nearest. Now subtract 4700 from 4900 to get reminder 200. Add 2 to quotient.
\text{Quotient: }132 \text{Reminder: }200
Since 200 is less than 2350, stop the division. The reminder is 200. The topmost line 000132 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 132.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}