Evaluate
\frac{610}{21}\approx 29.047619048
Factor
\frac{2 \cdot 5 \cdot 61}{3 \cdot 7} = 29\frac{1}{21} = 29.047619047619047
Share
Copied to clipboard
\begin{array}{l}\phantom{105)}\phantom{1}\\105\overline{)3050}\\\end{array}
Use the 1^{st} digit 3 from dividend 3050
\begin{array}{l}\phantom{105)}0\phantom{2}\\105\overline{)3050}\\\end{array}
Since 3 is less than 105, use the next digit 0 from dividend 3050 and add 0 to the quotient
\begin{array}{l}\phantom{105)}0\phantom{3}\\105\overline{)3050}\\\end{array}
Use the 2^{nd} digit 0 from dividend 3050
\begin{array}{l}\phantom{105)}00\phantom{4}\\105\overline{)3050}\\\end{array}
Since 30 is less than 105, use the next digit 5 from dividend 3050 and add 0 to the quotient
\begin{array}{l}\phantom{105)}00\phantom{5}\\105\overline{)3050}\\\end{array}
Use the 3^{rd} digit 5 from dividend 3050
\begin{array}{l}\phantom{105)}002\phantom{6}\\105\overline{)3050}\\\phantom{105)}\underline{\phantom{}210\phantom{9}}\\\phantom{105)9}95\\\end{array}
Find closest multiple of 105 to 305. We see that 2 \times 105 = 210 is the nearest. Now subtract 210 from 305 to get reminder 95. Add 2 to quotient.
\begin{array}{l}\phantom{105)}002\phantom{7}\\105\overline{)3050}\\\phantom{105)}\underline{\phantom{}210\phantom{9}}\\\phantom{105)9}950\\\end{array}
Use the 4^{th} digit 0 from dividend 3050
\begin{array}{l}\phantom{105)}0029\phantom{8}\\105\overline{)3050}\\\phantom{105)}\underline{\phantom{}210\phantom{9}}\\\phantom{105)9}950\\\phantom{105)}\underline{\phantom{9}945\phantom{}}\\\phantom{105)999}5\\\end{array}
Find closest multiple of 105 to 950. We see that 9 \times 105 = 945 is the nearest. Now subtract 945 from 950 to get reminder 5. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }5
Since 5 is less than 105, stop the division. The reminder is 5. The topmost line 0029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}