Evaluate
\frac{75}{11}\approx 6.818181818
Factor
\frac{3 \cdot 5 ^ {2}}{11} = 6\frac{9}{11} = 6.818181818181818
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)300}\\\end{array}
Since 3 is less than 44, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{44)}00\phantom{4}\\44\overline{)300}\\\end{array}
Since 30 is less than 44, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{44)}00\phantom{5}\\44\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{44)}006\phantom{6}\\44\overline{)300}\\\phantom{44)}\underline{\phantom{}264\phantom{}}\\\phantom{44)9}36\\\end{array}
Find closest multiple of 44 to 300. We see that 6 \times 44 = 264 is the nearest. Now subtract 264 from 300 to get reminder 36. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }36
Since 36 is less than 44, stop the division. The reminder is 36. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}