Solve for v
v = \frac{75}{7} = 10\frac{5}{7} \approx 10.714285714
Share
Copied to clipboard
2\times 30=2\left(v+15\right)\times \frac{9}{2}-\left(\frac{2}{9}v+\frac{10}{3}\right)\times 30
Variable v cannot be equal to -15 since division by zero is not defined. Multiply both sides of the equation by 2\left(v+15\right), the least common multiple of 15+v,2.
60=2\left(v+15\right)\times \frac{9}{2}-\left(\frac{2}{9}v+\frac{10}{3}\right)\times 30
Multiply 2 and 30 to get 60.
60=9\left(v+15\right)-\left(\frac{2}{9}v+\frac{10}{3}\right)\times 30
Multiply 2 and \frac{9}{2} to get 9.
60=9v+135-\left(\frac{2}{9}v+\frac{10}{3}\right)\times 30
Use the distributive property to multiply 9 by v+15.
60=9v+135-\left(\frac{20}{3}v+100\right)
Use the distributive property to multiply \frac{2}{9}v+\frac{10}{3} by 30.
60=9v+135-\frac{20}{3}v-100
To find the opposite of \frac{20}{3}v+100, find the opposite of each term.
60=\frac{7}{3}v+135-100
Combine 9v and -\frac{20}{3}v to get \frac{7}{3}v.
60=\frac{7}{3}v+35
Subtract 100 from 135 to get 35.
\frac{7}{3}v+35=60
Swap sides so that all variable terms are on the left hand side.
\frac{7}{3}v=60-35
Subtract 35 from both sides.
\frac{7}{3}v=25
Subtract 35 from 60 to get 25.
v=25\times \frac{3}{7}
Multiply both sides by \frac{3}{7}, the reciprocal of \frac{7}{3}.
v=\frac{75}{7}
Multiply 25 and \frac{3}{7} to get \frac{75}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}