Solve for y
y=3
Graph
Share
Copied to clipboard
3.6=y\times \frac{3}{2.5}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3.6=y\times \frac{30}{25}
Expand \frac{3}{2.5} by multiplying both numerator and the denominator by 10.
3.6=y\times \frac{6}{5}
Reduce the fraction \frac{30}{25} to lowest terms by extracting and canceling out 5.
y\times \frac{6}{5}=3.6
Swap sides so that all variable terms are on the left hand side.
y=3.6\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
y=\frac{18}{5}\times \frac{5}{6}
Convert decimal number 3.6 to fraction \frac{36}{10}. Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
y=\frac{18\times 5}{5\times 6}
Multiply \frac{18}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
y=\frac{18}{6}
Cancel out 5 in both numerator and denominator.
y=3
Divide 18 by 6 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}