Solve for b
b=-\frac{9y}{2}+42
Solve for y
y=-\frac{2b}{9}+\frac{28}{3}
Graph
Share
Copied to clipboard
2\left(3y+b\right)+3y+4=88
Multiply both sides of the equation by 8, the least common multiple of 4,8.
6y+2b+3y+4=88
Use the distributive property to multiply 2 by 3y+b.
9y+2b+4=88
Combine 6y and 3y to get 9y.
2b+4=88-9y
Subtract 9y from both sides.
2b=88-9y-4
Subtract 4 from both sides.
2b=84-9y
Subtract 4 from 88 to get 84.
\frac{2b}{2}=\frac{84-9y}{2}
Divide both sides by 2.
b=\frac{84-9y}{2}
Dividing by 2 undoes the multiplication by 2.
b=-\frac{9y}{2}+42
Divide 84-9y by 2.
2\left(3y+b\right)+3y+4=88
Multiply both sides of the equation by 8, the least common multiple of 4,8.
6y+2b+3y+4=88
Use the distributive property to multiply 2 by 3y+b.
9y+2b+4=88
Combine 6y and 3y to get 9y.
9y+4=88-2b
Subtract 2b from both sides.
9y=88-2b-4
Subtract 4 from both sides.
9y=84-2b
Subtract 4 from 88 to get 84.
\frac{9y}{9}=\frac{84-2b}{9}
Divide both sides by 9.
y=\frac{84-2b}{9}
Dividing by 9 undoes the multiplication by 9.
y=-\frac{2b}{9}+\frac{28}{3}
Divide 84-2b by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}