Evaluate
-\frac{2y^{4}}{3}+\frac{5x}{2}
Expand
-\frac{2y^{4}}{3}+\frac{5x}{2}
Share
Copied to clipboard
\frac{3x-4y^{4}}{6}-2x\left(-1\right)
Cancel out 4 and 4.
\frac{3x-4y^{4}}{6}-\left(-2x\right)
Multiply 2 and -1 to get -2.
\frac{3x-4y^{4}}{6}+2x
The opposite of -2x is 2x.
\frac{3x-4y^{4}}{6}+\frac{6\times 2x}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{6}{6}.
\frac{3x-4y^{4}+6\times 2x}{6}
Since \frac{3x-4y^{4}}{6} and \frac{6\times 2x}{6} have the same denominator, add them by adding their numerators.
\frac{3x-4y^{4}+12x}{6}
Do the multiplications in 3x-4y^{4}+6\times 2x.
\frac{15x-4y^{4}}{6}
Combine like terms in 3x-4y^{4}+12x.
\frac{3x-4y^{4}}{6}-2x\left(-1\right)
Cancel out 4 and 4.
\frac{3x-4y^{4}}{6}-\left(-2x\right)
Multiply 2 and -1 to get -2.
\frac{3x-4y^{4}}{6}+2x
The opposite of -2x is 2x.
\frac{3x-4y^{4}}{6}+\frac{6\times 2x}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{6}{6}.
\frac{3x-4y^{4}+6\times 2x}{6}
Since \frac{3x-4y^{4}}{6} and \frac{6\times 2x}{6} have the same denominator, add them by adding their numerators.
\frac{3x-4y^{4}+12x}{6}
Do the multiplications in 3x-4y^{4}+6\times 2x.
\frac{15x-4y^{4}}{6}
Combine like terms in 3x-4y^{4}+12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}