Solve for x
x<\frac{23}{6}
Graph
Share
Copied to clipboard
70\left(3x-2\right)-21\left(4x-4\right)-350<-6\left(14-7x\right)
Multiply both sides of the equation by 210, the least common multiple of 3,10,35. Since 210 is positive, the inequality direction remains the same.
210x-140-21\left(4x-4\right)-350<-6\left(14-7x\right)
Use the distributive property to multiply 70 by 3x-2.
210x-140-84x+84-350<-6\left(14-7x\right)
Use the distributive property to multiply -21 by 4x-4.
126x-140+84-350<-6\left(14-7x\right)
Combine 210x and -84x to get 126x.
126x-56-350<-6\left(14-7x\right)
Add -140 and 84 to get -56.
126x-406<-6\left(14-7x\right)
Subtract 350 from -56 to get -406.
126x-406<-84+42x
Use the distributive property to multiply -6 by 14-7x.
126x-406-42x<-84
Subtract 42x from both sides.
84x-406<-84
Combine 126x and -42x to get 84x.
84x<-84+406
Add 406 to both sides.
84x<322
Add -84 and 406 to get 322.
x<\frac{322}{84}
Divide both sides by 84. Since 84 is positive, the inequality direction remains the same.
x<\frac{23}{6}
Reduce the fraction \frac{322}{84} to lowest terms by extracting and canceling out 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}