Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(3x-\frac{1}{2}\right)=24x-4\left(\frac{1}{2}-\frac{1}{3}x\right)
Multiply both sides of the equation by 12, the least common multiple of 4,3.
9x+3\left(-\frac{1}{2}\right)=24x-4\left(\frac{1}{2}-\frac{1}{3}x\right)
Use the distributive property to multiply 3 by 3x-\frac{1}{2}.
9x+\frac{3\left(-1\right)}{2}=24x-4\left(\frac{1}{2}-\frac{1}{3}x\right)
Express 3\left(-\frac{1}{2}\right) as a single fraction.
9x+\frac{-3}{2}=24x-4\left(\frac{1}{2}-\frac{1}{3}x\right)
Multiply 3 and -1 to get -3.
9x-\frac{3}{2}=24x-4\left(\frac{1}{2}-\frac{1}{3}x\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
9x-\frac{3}{2}=24x-4\times \frac{1}{2}-4\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -4 by \frac{1}{2}-\frac{1}{3}x.
9x-\frac{3}{2}=24x+\frac{-4}{2}-4\left(-\frac{1}{3}\right)x
Multiply -4 and \frac{1}{2} to get \frac{-4}{2}.
9x-\frac{3}{2}=24x-2-4\left(-\frac{1}{3}\right)x
Divide -4 by 2 to get -2.
9x-\frac{3}{2}=24x-2+\frac{-4\left(-1\right)}{3}x
Express -4\left(-\frac{1}{3}\right) as a single fraction.
9x-\frac{3}{2}=24x-2+\frac{4}{3}x
Multiply -4 and -1 to get 4.
9x-\frac{3}{2}=\frac{76}{3}x-2
Combine 24x and \frac{4}{3}x to get \frac{76}{3}x.
9x-\frac{3}{2}-\frac{76}{3}x=-2
Subtract \frac{76}{3}x from both sides.
-\frac{49}{3}x-\frac{3}{2}=-2
Combine 9x and -\frac{76}{3}x to get -\frac{49}{3}x.
-\frac{49}{3}x=-2+\frac{3}{2}
Add \frac{3}{2} to both sides.
-\frac{49}{3}x=-\frac{4}{2}+\frac{3}{2}
Convert -2 to fraction -\frac{4}{2}.
-\frac{49}{3}x=\frac{-4+3}{2}
Since -\frac{4}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
-\frac{49}{3}x=-\frac{1}{2}
Add -4 and 3 to get -1.
x=-\frac{1}{2}\left(-\frac{3}{49}\right)
Multiply both sides by -\frac{3}{49}, the reciprocal of -\frac{49}{3}.
x=\frac{-\left(-3\right)}{2\times 49}
Multiply -\frac{1}{2} times -\frac{3}{49} by multiplying numerator times numerator and denominator times denominator.
x=\frac{3}{98}
Do the multiplications in the fraction \frac{-\left(-3\right)}{2\times 49}.