Solve for x
x=\frac{-21\sqrt{7}-49}{2}\approx -52.280388766
Graph
Share
Copied to clipboard
3x=\left(x-7\right)\sqrt{7}
Variable x cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by x-7.
3x=x\sqrt{7}-7\sqrt{7}
Use the distributive property to multiply x-7 by \sqrt{7}.
3x-x\sqrt{7}=-7\sqrt{7}
Subtract x\sqrt{7} from both sides.
-\sqrt{7}x+3x=-7\sqrt{7}
Reorder the terms.
\left(-\sqrt{7}+3\right)x=-7\sqrt{7}
Combine all terms containing x.
\left(3-\sqrt{7}\right)x=-7\sqrt{7}
The equation is in standard form.
\frac{\left(3-\sqrt{7}\right)x}{3-\sqrt{7}}=-\frac{7\sqrt{7}}{3-\sqrt{7}}
Divide both sides by -\sqrt{7}+3.
x=-\frac{7\sqrt{7}}{3-\sqrt{7}}
Dividing by -\sqrt{7}+3 undoes the multiplication by -\sqrt{7}+3.
x=\frac{-21\sqrt{7}-49}{2}
Divide -7\sqrt{7} by -\sqrt{7}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}