Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x-1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Factor x^{2}-1.
\frac{3xx}{x\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x\left(x-1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{3x}{\left(x-1\right)\left(x+1\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{3xx-\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Since \frac{3xx}{x\left(x-1\right)\left(x+1\right)} and \frac{x+1}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Do the multiplications in 3xx-\left(x+1\right).
\frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x-1\right)\left(x+1\right)}
Factor x\left(x^{2}-1\right).
\frac{3x^{2}-x-1-\left(2x^{2}+1\right)}{x\left(x-1\right)\left(x+1\right)}
Since \frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)} and \frac{2x^{2}+1}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-x-1-2x^{2}-1}{x\left(x-1\right)\left(x+1\right)}
Do the multiplications in 3x^{2}-x-1-\left(2x^{2}+1\right).
\frac{x^{2}-x-2}{x\left(x-1\right)\left(x+1\right)}
Combine like terms in 3x^{2}-x-1-2x^{2}-1.
\frac{\left(x-2\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-x-2}{x\left(x-1\right)\left(x+1\right)}.
\frac{x-2}{x\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-2}{x^{2}-x}
Expand x\left(x-1\right).
\frac{3x}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x-1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Factor x^{2}-1.
\frac{3xx}{x\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x\left(x-1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{3x}{\left(x-1\right)\left(x+1\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{3xx-\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Since \frac{3xx}{x\left(x-1\right)\left(x+1\right)} and \frac{x+1}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x^{2}-1\right)}
Do the multiplications in 3xx-\left(x+1\right).
\frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)}-\frac{2x^{2}+1}{x\left(x-1\right)\left(x+1\right)}
Factor x\left(x^{2}-1\right).
\frac{3x^{2}-x-1-\left(2x^{2}+1\right)}{x\left(x-1\right)\left(x+1\right)}
Since \frac{3x^{2}-x-1}{x\left(x-1\right)\left(x+1\right)} and \frac{2x^{2}+1}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-x-1-2x^{2}-1}{x\left(x-1\right)\left(x+1\right)}
Do the multiplications in 3x^{2}-x-1-\left(2x^{2}+1\right).
\frac{x^{2}-x-2}{x\left(x-1\right)\left(x+1\right)}
Combine like terms in 3x^{2}-x-1-2x^{2}-1.
\frac{\left(x-2\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-x-2}{x\left(x-1\right)\left(x+1\right)}.
\frac{x-2}{x\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-2}{x^{2}-x}
Expand x\left(x-1\right).