Solve for x
x=-10
x=12
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 3 x } { x + 4 } - 3 = \frac { x - 18 } { x - 4 }
Share
Copied to clipboard
\left(x-4\right)\times 3x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
\left(3x-12\right)x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x-4 by 3.
3x^{2}-12x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply 3x-12 by x.
3x^{2}-12x+\left(x^{2}-16\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x-4 by x+4 and combine like terms.
3x^{2}-12x-3x^{2}+48=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x^{2}-16 by -3.
-12x+48=\left(x+4\right)\left(x-18\right)
Combine 3x^{2} and -3x^{2} to get 0.
-12x+48=x^{2}-14x-72
Use the distributive property to multiply x+4 by x-18 and combine like terms.
-12x+48-x^{2}=-14x-72
Subtract x^{2} from both sides.
-12x+48-x^{2}+14x=-72
Add 14x to both sides.
2x+48-x^{2}=-72
Combine -12x and 14x to get 2x.
2x+48-x^{2}+72=0
Add 72 to both sides.
2x+120-x^{2}=0
Add 48 and 72 to get 120.
-x^{2}+2x+120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 120}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 120}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times 120}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+480}}{2\left(-1\right)}
Multiply 4 times 120.
x=\frac{-2±\sqrt{484}}{2\left(-1\right)}
Add 4 to 480.
x=\frac{-2±22}{2\left(-1\right)}
Take the square root of 484.
x=\frac{-2±22}{-2}
Multiply 2 times -1.
x=\frac{20}{-2}
Now solve the equation x=\frac{-2±22}{-2} when ± is plus. Add -2 to 22.
x=-10
Divide 20 by -2.
x=-\frac{24}{-2}
Now solve the equation x=\frac{-2±22}{-2} when ± is minus. Subtract 22 from -2.
x=12
Divide -24 by -2.
x=-10 x=12
The equation is now solved.
\left(x-4\right)\times 3x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
\left(3x-12\right)x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x-4 by 3.
3x^{2}-12x+\left(x-4\right)\left(x+4\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply 3x-12 by x.
3x^{2}-12x+\left(x^{2}-16\right)\left(-3\right)=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x-4 by x+4 and combine like terms.
3x^{2}-12x-3x^{2}+48=\left(x+4\right)\left(x-18\right)
Use the distributive property to multiply x^{2}-16 by -3.
-12x+48=\left(x+4\right)\left(x-18\right)
Combine 3x^{2} and -3x^{2} to get 0.
-12x+48=x^{2}-14x-72
Use the distributive property to multiply x+4 by x-18 and combine like terms.
-12x+48-x^{2}=-14x-72
Subtract x^{2} from both sides.
-12x+48-x^{2}+14x=-72
Add 14x to both sides.
2x+48-x^{2}=-72
Combine -12x and 14x to get 2x.
2x-x^{2}=-72-48
Subtract 48 from both sides.
2x-x^{2}=-120
Subtract 48 from -72 to get -120.
-x^{2}+2x=-120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{120}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=-\frac{120}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=-\frac{120}{-1}
Divide 2 by -1.
x^{2}-2x=120
Divide -120 by -1.
x^{2}-2x+1=120+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=121
Add 120 to 1.
\left(x-1\right)^{2}=121
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{121}
Take the square root of both sides of the equation.
x-1=11 x-1=-11
Simplify.
x=12 x=-10
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}