Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3x\left(x^{2}-y\right)}{\left(x+4\right)\left(x^{2}-y\right)}-\frac{\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and x^{2}-y is \left(x+4\right)\left(x^{2}-y\right). Multiply \frac{3x}{x+4} times \frac{x^{2}-y}{x^{2}-y}. Multiply \frac{x^{2}-4x}{x^{2}-y} times \frac{x+4}{x+4}.
\frac{3x\left(x^{2}-y\right)-\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)}
Since \frac{3x\left(x^{2}-y\right)}{\left(x+4\right)\left(x^{2}-y\right)} and \frac{\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{3}-3xy-x^{3}-4x^{2}+4x^{2}+16x}{\left(x+4\right)\left(x^{2}-y\right)}
Do the multiplications in 3x\left(x^{2}-y\right)-\left(x^{2}-4x\right)\left(x+4\right).
\frac{2x^{3}-3xy+16x}{\left(x+4\right)\left(x^{2}-y\right)}
Combine like terms in 3x^{3}-3xy-x^{3}-4x^{2}+4x^{2}+16x.
\frac{2x^{3}-3xy+16x}{x^{3}+4x^{2}-xy-4y}
Expand \left(x+4\right)\left(x^{2}-y\right).
\frac{3x\left(x^{2}-y\right)}{\left(x+4\right)\left(x^{2}-y\right)}-\frac{\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and x^{2}-y is \left(x+4\right)\left(x^{2}-y\right). Multiply \frac{3x}{x+4} times \frac{x^{2}-y}{x^{2}-y}. Multiply \frac{x^{2}-4x}{x^{2}-y} times \frac{x+4}{x+4}.
\frac{3x\left(x^{2}-y\right)-\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)}
Since \frac{3x\left(x^{2}-y\right)}{\left(x+4\right)\left(x^{2}-y\right)} and \frac{\left(x^{2}-4x\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{3}-3xy-x^{3}-4x^{2}+4x^{2}+16x}{\left(x+4\right)\left(x^{2}-y\right)}
Do the multiplications in 3x\left(x^{2}-y\right)-\left(x^{2}-4x\right)\left(x+4\right).
\frac{2x^{3}-3xy+16x}{\left(x+4\right)\left(x^{2}-y\right)}
Combine like terms in 3x^{3}-3xy-x^{3}-4x^{2}+4x^{2}+16x.
\frac{2x^{3}-3xy+16x}{x^{3}+4x^{2}-xy-4y}
Expand \left(x+4\right)\left(x^{2}-y\right).