Evaluate
\frac{5x}{6x^{2}+x-1}
Factor
\frac{5x}{\left(3x-1\right)\left(2x+1\right)}
Graph
Share
Copied to clipboard
\frac{3x\left(2x+1\right)}{\left(3x-1\right)\left(2x+1\right)}-\frac{2x\left(3x-1\right)}{\left(3x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-1 and 2x+1 is \left(3x-1\right)\left(2x+1\right). Multiply \frac{3x}{3x-1} times \frac{2x+1}{2x+1}. Multiply \frac{2x}{2x+1} times \frac{3x-1}{3x-1}.
\frac{3x\left(2x+1\right)-2x\left(3x-1\right)}{\left(3x-1\right)\left(2x+1\right)}
Since \frac{3x\left(2x+1\right)}{\left(3x-1\right)\left(2x+1\right)} and \frac{2x\left(3x-1\right)}{\left(3x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}+3x-6x^{2}+2x}{\left(3x-1\right)\left(2x+1\right)}
Do the multiplications in 3x\left(2x+1\right)-2x\left(3x-1\right).
\frac{5x}{\left(3x-1\right)\left(2x+1\right)}
Combine like terms in 6x^{2}+3x-6x^{2}+2x.
\frac{5x}{6x^{2}+x-1}
Expand \left(3x-1\right)\left(2x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}