Solve for x (complex solution)
x=\frac{3+\sqrt{231}i}{20}\approx 0.15+0.759934208i
x=\frac{-\sqrt{231}i+3}{20}\approx 0.15-0.759934208i
Graph
Share
Copied to clipboard
3x=10x^{2}+6
Multiply both sides of the equation by 2.
3x-10x^{2}=6
Subtract 10x^{2} from both sides.
3x-10x^{2}-6=0
Subtract 6 from both sides.
-10x^{2}+3x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-10\right)\left(-6\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-10\right)\left(-6\right)}}{2\left(-10\right)}
Square 3.
x=\frac{-3±\sqrt{9+40\left(-6\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-3±\sqrt{9-240}}{2\left(-10\right)}
Multiply 40 times -6.
x=\frac{-3±\sqrt{-231}}{2\left(-10\right)}
Add 9 to -240.
x=\frac{-3±\sqrt{231}i}{2\left(-10\right)}
Take the square root of -231.
x=\frac{-3±\sqrt{231}i}{-20}
Multiply 2 times -10.
x=\frac{-3+\sqrt{231}i}{-20}
Now solve the equation x=\frac{-3±\sqrt{231}i}{-20} when ± is plus. Add -3 to i\sqrt{231}.
x=\frac{-\sqrt{231}i+3}{20}
Divide -3+i\sqrt{231} by -20.
x=\frac{-\sqrt{231}i-3}{-20}
Now solve the equation x=\frac{-3±\sqrt{231}i}{-20} when ± is minus. Subtract i\sqrt{231} from -3.
x=\frac{3+\sqrt{231}i}{20}
Divide -3-i\sqrt{231} by -20.
x=\frac{-\sqrt{231}i+3}{20} x=\frac{3+\sqrt{231}i}{20}
The equation is now solved.
3x=10x^{2}+6
Multiply both sides of the equation by 2.
3x-10x^{2}=6
Subtract 10x^{2} from both sides.
-10x^{2}+3x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+3x}{-10}=\frac{6}{-10}
Divide both sides by -10.
x^{2}+\frac{3}{-10}x=\frac{6}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{3}{10}x=\frac{6}{-10}
Divide 3 by -10.
x^{2}-\frac{3}{10}x=-\frac{3}{5}
Reduce the fraction \frac{6}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{10}x+\left(-\frac{3}{20}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{20}\right)^{2}
Divide -\frac{3}{10}, the coefficient of the x term, by 2 to get -\frac{3}{20}. Then add the square of -\frac{3}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{10}x+\frac{9}{400}=-\frac{3}{5}+\frac{9}{400}
Square -\frac{3}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{10}x+\frac{9}{400}=-\frac{231}{400}
Add -\frac{3}{5} to \frac{9}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{20}\right)^{2}=-\frac{231}{400}
Factor x^{2}-\frac{3}{10}x+\frac{9}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{20}\right)^{2}}=\sqrt{-\frac{231}{400}}
Take the square root of both sides of the equation.
x-\frac{3}{20}=\frac{\sqrt{231}i}{20} x-\frac{3}{20}=-\frac{\sqrt{231}i}{20}
Simplify.
x=\frac{3+\sqrt{231}i}{20} x=\frac{-\sqrt{231}i+3}{20}
Add \frac{3}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}