Solve for x
x=-\frac{7}{15}\approx -0.466666667
Graph
Share
Copied to clipboard
9\times 3x+3=6\times 2x-4
Multiply both sides of the equation by 18, the least common multiple of 2,6,3,9.
27x+3=6\times 2x-4
Multiply 9 and 3 to get 27.
27x+3=12x-4
Multiply 6 and 2 to get 12.
27x+3-12x=-4
Subtract 12x from both sides.
15x+3=-4
Combine 27x and -12x to get 15x.
15x=-4-3
Subtract 3 from both sides.
15x=-7
Subtract 3 from -4 to get -7.
x=\frac{-7}{15}
Divide both sides by 15.
x=-\frac{7}{15}
Fraction \frac{-7}{15} can be rewritten as -\frac{7}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}