Solve for x
x = \frac{2 \sqrt{102}}{3} \approx 6.733003292
x = -\frac{2 \sqrt{102}}{3} \approx -6.733003292
Graph
Share
Copied to clipboard
3x^{2}-38-98=0\times 15
Multiply both sides of the equation by 4.
3x^{2}-136=0\times 15
Subtract 98 from -38 to get -136.
3x^{2}-136=0
Multiply 0 and 15 to get 0.
3x^{2}=136
Add 136 to both sides. Anything plus zero gives itself.
x^{2}=\frac{136}{3}
Divide both sides by 3.
x=\frac{2\sqrt{102}}{3} x=-\frac{2\sqrt{102}}{3}
Take the square root of both sides of the equation.
3x^{2}-38-98=0\times 15
Multiply both sides of the equation by 4.
3x^{2}-136=0\times 15
Subtract 98 from -38 to get -136.
3x^{2}-136=0
Multiply 0 and 15 to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-136\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -136 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-136\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-136\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{1632}}{2\times 3}
Multiply -12 times -136.
x=\frac{0±4\sqrt{102}}{2\times 3}
Take the square root of 1632.
x=\frac{0±4\sqrt{102}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{102}}{3}
Now solve the equation x=\frac{0±4\sqrt{102}}{6} when ± is plus.
x=-\frac{2\sqrt{102}}{3}
Now solve the equation x=\frac{0±4\sqrt{102}}{6} when ± is minus.
x=\frac{2\sqrt{102}}{3} x=-\frac{2\sqrt{102}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}