Solve for x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
3x^{2}-3x+1=\left(x-1\right)\left(x+1\right)\times 3+\left(x-1\right)\times 2-\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x+1,x-1.
3x^{2}-3x+1=\left(x^{2}-1\right)\times 3+\left(x-1\right)\times 2-\left(x+1\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
3x^{2}-3x+1=3x^{2}-3+\left(x-1\right)\times 2-\left(x+1\right)
Use the distributive property to multiply x^{2}-1 by 3.
3x^{2}-3x+1=3x^{2}-3+2x-2-\left(x+1\right)
Use the distributive property to multiply x-1 by 2.
3x^{2}-3x+1=3x^{2}-5+2x-\left(x+1\right)
Subtract 2 from -3 to get -5.
3x^{2}-3x+1=3x^{2}-5+2x-x-1
To find the opposite of x+1, find the opposite of each term.
3x^{2}-3x+1=3x^{2}-5+x-1
Combine 2x and -x to get x.
3x^{2}-3x+1=3x^{2}-6+x
Subtract 1 from -5 to get -6.
3x^{2}-3x+1-3x^{2}=-6+x
Subtract 3x^{2} from both sides.
-3x+1=-6+x
Combine 3x^{2} and -3x^{2} to get 0.
-3x+1-x=-6
Subtract x from both sides.
-4x+1=-6
Combine -3x and -x to get -4x.
-4x=-6-1
Subtract 1 from both sides.
-4x=-7
Subtract 1 from -6 to get -7.
x=\frac{-7}{-4}
Divide both sides by -4.
x=\frac{7}{4}
Fraction \frac{-7}{-4} can be simplified to \frac{7}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}