Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3x^{2}-14x+8\right)\left(-x^{2}+x+12\right)}{\left(2x^{2}-3x-20\right)\left(9-x^{2}\right)}
Divide \frac{3x^{2}-14x+8}{2x^{2}-3x-20} by \frac{9-x^{2}}{-x^{2}+x+12} by multiplying \frac{3x^{2}-14x+8}{2x^{2}-3x-20} by the reciprocal of \frac{9-x^{2}}{-x^{2}+x+12}.
\frac{\left(-x-3\right)\left(3x-2\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x-3\right)\left(-x-3\right)\left(2x+5\right)}
Factor the expressions that are not already factored.
\frac{\left(x-4\right)\left(3x-2\right)}{\left(x-3\right)\left(2x+5\right)}
Cancel out \left(x-4\right)\left(-x-3\right) in both numerator and denominator.
\frac{3x^{2}-14x+8}{2x^{2}-x-15}
Expand the expression.
\frac{\left(3x^{2}-14x+8\right)\left(-x^{2}+x+12\right)}{\left(2x^{2}-3x-20\right)\left(9-x^{2}\right)}
Divide \frac{3x^{2}-14x+8}{2x^{2}-3x-20} by \frac{9-x^{2}}{-x^{2}+x+12} by multiplying \frac{3x^{2}-14x+8}{2x^{2}-3x-20} by the reciprocal of \frac{9-x^{2}}{-x^{2}+x+12}.
\frac{\left(-x-3\right)\left(3x-2\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x-3\right)\left(-x-3\right)\left(2x+5\right)}
Factor the expressions that are not already factored.
\frac{\left(x-4\right)\left(3x-2\right)}{\left(x-3\right)\left(2x+5\right)}
Cancel out \left(x-4\right)\left(-x-3\right) in both numerator and denominator.
\frac{3x^{2}-14x+8}{2x^{2}-x-15}
Expand the expression.