Evaluate
-\frac{x\left(5x+2\right)}{x^{3}-1}
Factor
-\frac{x\left(5x+2\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Graph
Share
Copied to clipboard
\frac{3x^{2}}{x^{2}+x+1}-\frac{x^{3}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x}{x-1}
Factor x^{3}-1.
\frac{3x^{2}\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{x^{3}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+x+1 and \left(x-1\right)\left(x^{2}+x+1\right) is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{3x^{2}}{x^{2}+x+1} times \frac{x-1}{x-1}.
\frac{3x^{2}\left(x-1\right)-x^{3}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x}{x-1}
Since \frac{3x^{2}\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{x^{3}}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{3}-3x^{2}-x^{3}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x}{x-1}
Do the multiplications in 3x^{2}\left(x-1\right)-x^{3}.
\frac{2x^{3}-3x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x}{x-1}
Combine like terms in 3x^{3}-3x^{2}-x^{3}.
\frac{2x^{3}-3x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x-1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{2x}{x-1} times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{2x^{3}-3x^{2}-2x\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Since \frac{2x^{3}-3x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{2x\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}-3x^{2}-2x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Do the multiplications in 2x^{3}-3x^{2}-2x\left(x^{2}+x+1\right).
\frac{-5x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Combine like terms in 2x^{3}-3x^{2}-2x^{3}-2x^{2}-2x.
\frac{-5x^{2}-2x}{x^{3}-1}
Expand \left(x-1\right)\left(x^{2}+x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}