Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-\left(11x-4\right)=0
Multiply both sides of the equation by 2.
3x^{2}-11x+4=0
To find the opposite of 11x-4, find the opposite of each term.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\times 4}}{2\times 3}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-12\times 4}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11\right)±\sqrt{121-48}}{2\times 3}
Multiply -12 times 4.
x=\frac{-\left(-11\right)±\sqrt{73}}{2\times 3}
Add 121 to -48.
x=\frac{11±\sqrt{73}}{2\times 3}
The opposite of -11 is 11.
x=\frac{11±\sqrt{73}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{73}+11}{6}
Now solve the equation x=\frac{11±\sqrt{73}}{6} when ± is plus. Add 11 to \sqrt{73}.
x=\frac{11-\sqrt{73}}{6}
Now solve the equation x=\frac{11±\sqrt{73}}{6} when ± is minus. Subtract \sqrt{73} from 11.
x=\frac{\sqrt{73}+11}{6} x=\frac{11-\sqrt{73}}{6}
The equation is now solved.
3x^{2}-\left(11x-4\right)=0
Multiply both sides of the equation by 2.
3x^{2}-11x+4=0
To find the opposite of 11x-4, find the opposite of each term.
3x^{2}-11x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-11x}{3}=-\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{11}{3}x=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{4}{3}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{73}{36}
Add -\frac{4}{3} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{6}\right)^{2}=\frac{73}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{\sqrt{73}}{6} x-\frac{11}{6}=-\frac{\sqrt{73}}{6}
Simplify.
x=\frac{\sqrt{73}+11}{6} x=\frac{11-\sqrt{73}}{6}
Add \frac{11}{6} to both sides of the equation.