Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3x^{2}+9x+6\right)\left(x^{2}+3x-18\right)}{\left(4x^{2}-4x-16\right)\left(x^{2}+8x+12\right)}
Divide \frac{3x^{2}+9x+6}{4x^{2}-4x-16} by \frac{x^{2}+8x+12}{x^{2}+3x-18} by multiplying \frac{3x^{2}+9x+6}{4x^{2}-4x-16} by the reciprocal of \frac{x^{2}+8x+12}{x^{2}+3x-18}.
\frac{3\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)\left(x-\left(-\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)}
Factor the expressions that are not already factored.
\frac{3\left(x-3\right)\left(x+1\right)}{4\left(x-\left(-\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)}
Cancel out \left(x+2\right)\left(x+6\right) in both numerator and denominator.
\frac{3x^{2}-6x-9}{4x^{2}-4x-16}
Expand the expression.
\frac{\left(3x^{2}+9x+6\right)\left(x^{2}+3x-18\right)}{\left(4x^{2}-4x-16\right)\left(x^{2}+8x+12\right)}
Divide \frac{3x^{2}+9x+6}{4x^{2}-4x-16} by \frac{x^{2}+8x+12}{x^{2}+3x-18} by multiplying \frac{3x^{2}+9x+6}{4x^{2}-4x-16} by the reciprocal of \frac{x^{2}+8x+12}{x^{2}+3x-18}.
\frac{3\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)\left(x-\left(-\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)}
Factor the expressions that are not already factored.
\frac{3\left(x-3\right)\left(x+1\right)}{4\left(x-\left(-\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}+\frac{1}{2}\right)\right)}
Cancel out \left(x+2\right)\left(x+6\right) in both numerator and denominator.
\frac{3x^{2}-6x-9}{4x^{2}-4x-16}
Expand the expression.