Solve for c
c=\frac{y+5x-30xy-17x^{2}}{2\left(2x+3y\right)}
x\neq -\frac{3y}{2}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{900y^{2}-168cy-232y+16c^{2}-40c+25}}{34}-\frac{2c}{17}-\frac{15y}{17}+\frac{5}{34}\text{, }&\left(y\neq \frac{26}{27}\text{ and }c\neq \frac{5}{4}\text{ and }arg(4c-5)\geq \pi \right)\text{ or }\left(arg(4c-5)\geq \pi \text{ and }c\neq \frac{5}{4}\text{ and }arg(4c-\frac{227}{9})\geq \pi \right)\text{ or }\left(c\neq \frac{227}{36}\text{ and }y\neq 0\text{ and }arg(4c-\frac{227}{9})\geq \pi \right)\text{ or }\left(y\neq \frac{26}{27}\text{ and }y\neq 0\right)\\x=-\frac{\sqrt{900y^{2}-168cy-232y+16c^{2}-40c+25}}{34}-\frac{2c}{17}-\frac{15y}{17}+\frac{5}{34}\text{, }&\left(y\neq \frac{26}{27}\text{ and }c\neq \frac{5}{4}\text{ and }arg(5-4c)\geq \pi \right)\text{ or }\left(arg(\frac{227}{9}-4c)\geq \pi \text{ and }c\neq \frac{227}{36}\text{ and }arg(5-4c)\geq \pi \right)\text{ or }\left(arg(\frac{227}{9}-4c)\geq \pi \text{ and }c\neq \frac{227}{36}\text{ and }y\neq 0\right)\text{ or }\left(y\neq \frac{26}{27}\text{ and }y\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
3x^{2}+5x+y=5x\times 2\left(2x+3y\right)+2\left(2x+3y\right)c
Multiply both sides of the equation by 2\left(2x+3y\right).
3x^{2}+5x+y=10x\left(2x+3y\right)+2\left(2x+3y\right)c
Multiply 5 and 2 to get 10.
3x^{2}+5x+y=20x^{2}+30xy+2\left(2x+3y\right)c
Use the distributive property to multiply 10x by 2x+3y.
3x^{2}+5x+y=20x^{2}+30xy+\left(4x+6y\right)c
Use the distributive property to multiply 2 by 2x+3y.
3x^{2}+5x+y=20x^{2}+30xy+4xc+6yc
Use the distributive property to multiply 4x+6y by c.
20x^{2}+30xy+4xc+6yc=3x^{2}+5x+y
Swap sides so that all variable terms are on the left hand side.
30xy+4xc+6yc=3x^{2}+5x+y-20x^{2}
Subtract 20x^{2} from both sides.
30xy+4xc+6yc=-17x^{2}+5x+y
Combine 3x^{2} and -20x^{2} to get -17x^{2}.
4xc+6yc=-17x^{2}+5x+y-30xy
Subtract 30xy from both sides.
\left(4x+6y\right)c=-17x^{2}+5x+y-30xy
Combine all terms containing c.
\left(4x+6y\right)c=y+5x-30xy-17x^{2}
The equation is in standard form.
\frac{\left(4x+6y\right)c}{4x+6y}=\frac{y+5x-30xy-17x^{2}}{4x+6y}
Divide both sides by 4x+6y.
c=\frac{y+5x-30xy-17x^{2}}{4x+6y}
Dividing by 4x+6y undoes the multiplication by 4x+6y.
c=\frac{y+5x-30xy-17x^{2}}{2\left(2x+3y\right)}
Divide -17x^{2}+5x+y-30xy by 4x+6y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}