Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(3x+4\right)}{x\left(x-2\right)}-\frac{2x-7}{x}-\frac{x+8}{x-2}
Factor the expressions that are not already factored in \frac{3x^{2}+4x}{x^{2}-2x}.
\frac{3x+4}{x-2}-\frac{2x-7}{x}-\frac{x+8}{x-2}
Cancel out x in both numerator and denominator.
\frac{\left(3x+4\right)x}{x\left(x-2\right)}-\frac{\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x+8}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x is x\left(x-2\right). Multiply \frac{3x+4}{x-2} times \frac{x}{x}. Multiply \frac{2x-7}{x} times \frac{x-2}{x-2}.
\frac{\left(3x+4\right)x-\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x+8}{x-2}
Since \frac{\left(3x+4\right)x}{x\left(x-2\right)} and \frac{\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+4x-2x^{2}+4x+7x-14}{x\left(x-2\right)}-\frac{x+8}{x-2}
Do the multiplications in \left(3x+4\right)x-\left(2x-7\right)\left(x-2\right).
\frac{x^{2}+15x-14}{x\left(x-2\right)}-\frac{x+8}{x-2}
Combine like terms in 3x^{2}+4x-2x^{2}+4x+7x-14.
\frac{x^{2}+15x-14}{x\left(x-2\right)}-\frac{\left(x+8\right)x}{x\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x-2 is x\left(x-2\right). Multiply \frac{x+8}{x-2} times \frac{x}{x}.
\frac{x^{2}+15x-14-\left(x+8\right)x}{x\left(x-2\right)}
Since \frac{x^{2}+15x-14}{x\left(x-2\right)} and \frac{\left(x+8\right)x}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+15x-14-x^{2}-8x}{x\left(x-2\right)}
Do the multiplications in x^{2}+15x-14-\left(x+8\right)x.
\frac{7x-14}{x\left(x-2\right)}
Combine like terms in x^{2}+15x-14-x^{2}-8x.
\frac{7\left(x-2\right)}{x\left(x-2\right)}
Factor the expressions that are not already factored in \frac{7x-14}{x\left(x-2\right)}.
\frac{7}{x}
Cancel out x-2 in both numerator and denominator.
\frac{x\left(3x+4\right)}{x\left(x-2\right)}-\frac{2x-7}{x}-\frac{x+8}{x-2}
Factor the expressions that are not already factored in \frac{3x^{2}+4x}{x^{2}-2x}.
\frac{3x+4}{x-2}-\frac{2x-7}{x}-\frac{x+8}{x-2}
Cancel out x in both numerator and denominator.
\frac{\left(3x+4\right)x}{x\left(x-2\right)}-\frac{\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x+8}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x is x\left(x-2\right). Multiply \frac{3x+4}{x-2} times \frac{x}{x}. Multiply \frac{2x-7}{x} times \frac{x-2}{x-2}.
\frac{\left(3x+4\right)x-\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x+8}{x-2}
Since \frac{\left(3x+4\right)x}{x\left(x-2\right)} and \frac{\left(2x-7\right)\left(x-2\right)}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+4x-2x^{2}+4x+7x-14}{x\left(x-2\right)}-\frac{x+8}{x-2}
Do the multiplications in \left(3x+4\right)x-\left(2x-7\right)\left(x-2\right).
\frac{x^{2}+15x-14}{x\left(x-2\right)}-\frac{x+8}{x-2}
Combine like terms in 3x^{2}+4x-2x^{2}+4x+7x-14.
\frac{x^{2}+15x-14}{x\left(x-2\right)}-\frac{\left(x+8\right)x}{x\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x-2 is x\left(x-2\right). Multiply \frac{x+8}{x-2} times \frac{x}{x}.
\frac{x^{2}+15x-14-\left(x+8\right)x}{x\left(x-2\right)}
Since \frac{x^{2}+15x-14}{x\left(x-2\right)} and \frac{\left(x+8\right)x}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+15x-14-x^{2}-8x}{x\left(x-2\right)}
Do the multiplications in x^{2}+15x-14-\left(x+8\right)x.
\frac{7x-14}{x\left(x-2\right)}
Combine like terms in x^{2}+15x-14-x^{2}-8x.
\frac{7\left(x-2\right)}{x\left(x-2\right)}
Factor the expressions that are not already factored in \frac{7x-14}{x\left(x-2\right)}.
\frac{7}{x}
Cancel out x-2 in both numerator and denominator.