Solve for y
y=\frac{3x+418195493}{\left(2x+3\right)x^{2}}
x\neq -\frac{3}{2}\text{ and }x\neq 0
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 3 x + 53 ^ { 5 } } { 3 x ^ { 2 } + 2 x ^ { 3 } } = y
Share
Copied to clipboard
3x+53^{5}=y\left(2x+3\right)x^{2}
Multiply both sides of the equation by \left(2x+3\right)x^{2}.
3x+418195493=y\left(2x+3\right)x^{2}
Calculate 53 to the power of 5 and get 418195493.
3x+418195493=\left(2yx+3y\right)x^{2}
Use the distributive property to multiply y by 2x+3.
3x+418195493=2yx^{3}+3yx^{2}
Use the distributive property to multiply 2yx+3y by x^{2}.
2yx^{3}+3yx^{2}=3x+418195493
Swap sides so that all variable terms are on the left hand side.
\left(2x^{3}+3x^{2}\right)y=3x+418195493
Combine all terms containing y.
\frac{\left(2x^{3}+3x^{2}\right)y}{2x^{3}+3x^{2}}=\frac{3x+418195493}{2x^{3}+3x^{2}}
Divide both sides by 3x^{2}+2x^{3}.
y=\frac{3x+418195493}{2x^{3}+3x^{2}}
Dividing by 3x^{2}+2x^{3} undoes the multiplication by 3x^{2}+2x^{3}.
y=\frac{3x+418195493}{\left(2x+3\right)x^{2}}
Divide 3x+418195493 by 3x^{2}+2x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}