Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+53^{5}=y\left(2x+3\right)x^{2}
Multiply both sides of the equation by \left(2x+3\right)x^{2}.
3x+418195493=y\left(2x+3\right)x^{2}
Calculate 53 to the power of 5 and get 418195493.
3x+418195493=\left(2yx+3y\right)x^{2}
Use the distributive property to multiply y by 2x+3.
3x+418195493=2yx^{3}+3yx^{2}
Use the distributive property to multiply 2yx+3y by x^{2}.
2yx^{3}+3yx^{2}=3x+418195493
Swap sides so that all variable terms are on the left hand side.
\left(2x^{3}+3x^{2}\right)y=3x+418195493
Combine all terms containing y.
\frac{\left(2x^{3}+3x^{2}\right)y}{2x^{3}+3x^{2}}=\frac{3x+418195493}{2x^{3}+3x^{2}}
Divide both sides by 3x^{2}+2x^{3}.
y=\frac{3x+418195493}{2x^{3}+3x^{2}}
Dividing by 3x^{2}+2x^{3} undoes the multiplication by 3x^{2}+2x^{3}.
y=\frac{3x+418195493}{\left(2x+3\right)x^{2}}
Divide 3x+418195493 by 3x^{2}+2x^{3}.