Solve for c
c=-\frac{3x+4}{2\left(5-x\right)}
x\neq 5
Solve for x
x=-\frac{2\left(5c+2\right)}{3-2c}
c\neq \frac{3}{2}
Graph
Share
Copied to clipboard
3x+4=2c\left(x-5\right)
Multiply both sides of the equation by x-5.
3x+4=2cx-10c
Use the distributive property to multiply 2c by x-5.
2cx-10c=3x+4
Swap sides so that all variable terms are on the left hand side.
\left(2x-10\right)c=3x+4
Combine all terms containing c.
\frac{\left(2x-10\right)c}{2x-10}=\frac{3x+4}{2x-10}
Divide both sides by 2x-10.
c=\frac{3x+4}{2x-10}
Dividing by 2x-10 undoes the multiplication by 2x-10.
c=\frac{3x+4}{2\left(x-5\right)}
Divide 3x+4 by 2x-10.
3x+4=2c\left(x-5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by x-5.
3x+4=2cx-10c
Use the distributive property to multiply 2c by x-5.
3x+4-2cx=-10c
Subtract 2cx from both sides.
3x-2cx=-10c-4
Subtract 4 from both sides.
\left(3-2c\right)x=-10c-4
Combine all terms containing x.
\frac{\left(3-2c\right)x}{3-2c}=\frac{-10c-4}{3-2c}
Divide both sides by 3-2c.
x=\frac{-10c-4}{3-2c}
Dividing by 3-2c undoes the multiplication by 3-2c.
x=-\frac{2\left(5c+2\right)}{3-2c}
Divide -4-10c by 3-2c.
x=-\frac{2\left(5c+2\right)}{3-2c}\text{, }x\neq 5
Variable x cannot be equal to 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}