Solve for m
m=-\frac{2-2n+3x-nx}{1-x}
x\neq -2\text{ and }x\neq 1
Solve for n
n=\frac{2+m+3x-mx}{x+2}
x\neq -2\text{ and }x\neq 1
Graph
Share
Copied to clipboard
3x+2=\left(x-1\right)m+\left(x+2\right)n
Multiply both sides of the equation by \left(x-1\right)\left(x+2\right), the least common multiple of \left(x+2\right)\left(x-1\right),x+2,x-1.
3x+2=xm-m+\left(x+2\right)n
Use the distributive property to multiply x-1 by m.
3x+2=xm-m+xn+2n
Use the distributive property to multiply x+2 by n.
xm-m+xn+2n=3x+2
Swap sides so that all variable terms are on the left hand side.
xm-m+2n=3x+2-xn
Subtract xn from both sides.
xm-m=3x+2-xn-2n
Subtract 2n from both sides.
\left(x-1\right)m=3x+2-xn-2n
Combine all terms containing m.
\left(x-1\right)m=2-2n+3x-nx
The equation is in standard form.
\frac{\left(x-1\right)m}{x-1}=\frac{2-2n+3x-nx}{x-1}
Divide both sides by x-1.
m=\frac{2-2n+3x-nx}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
3x+2=\left(x-1\right)m+\left(x+2\right)n
Multiply both sides of the equation by \left(x-1\right)\left(x+2\right), the least common multiple of \left(x+2\right)\left(x-1\right),x+2,x-1.
3x+2=xm-m+\left(x+2\right)n
Use the distributive property to multiply x-1 by m.
3x+2=xm-m+xn+2n
Use the distributive property to multiply x+2 by n.
xm-m+xn+2n=3x+2
Swap sides so that all variable terms are on the left hand side.
-m+xn+2n=3x+2-xm
Subtract xm from both sides.
xn+2n=3x+2-xm+m
Add m to both sides.
\left(x+2\right)n=3x+2-xm+m
Combine all terms containing n.
\left(x+2\right)n=2+m+3x-mx
The equation is in standard form.
\frac{\left(x+2\right)n}{x+2}=\frac{2+m+3x-mx}{x+2}
Divide both sides by x+2.
n=\frac{2+m+3x-mx}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}