Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(3x+1\right)+\left(x-2\right)\times 4=-8
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x,x^{2}-2x.
3x^{2}+x+\left(x-2\right)\times 4=-8
Use the distributive property to multiply x by 3x+1.
3x^{2}+x+4x-8=-8
Use the distributive property to multiply x-2 by 4.
3x^{2}+5x-8=-8
Combine x and 4x to get 5x.
3x^{2}+5x-8+8=0
Add 8 to both sides.
3x^{2}+5x=0
Add -8 and 8 to get 0.
x\left(3x+5\right)=0
Factor out x.
x=0 x=-\frac{5}{3}
To find equation solutions, solve x=0 and 3x+5=0.
x=-\frac{5}{3}
Variable x cannot be equal to 0.
x\left(3x+1\right)+\left(x-2\right)\times 4=-8
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x,x^{2}-2x.
3x^{2}+x+\left(x-2\right)\times 4=-8
Use the distributive property to multiply x by 3x+1.
3x^{2}+x+4x-8=-8
Use the distributive property to multiply x-2 by 4.
3x^{2}+5x-8=-8
Combine x and 4x to get 5x.
3x^{2}+5x-8+8=0
Add 8 to both sides.
3x^{2}+5x=0
Add -8 and 8 to get 0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\times 3}
Take the square root of 5^{2}.
x=\frac{-5±5}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-5±5}{6} when ± is plus. Add -5 to 5.
x=0
Divide 0 by 6.
x=-\frac{10}{6}
Now solve the equation x=\frac{-5±5}{6} when ± is minus. Subtract 5 from -5.
x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{5}{3}
The equation is now solved.
x=-\frac{5}{3}
Variable x cannot be equal to 0.
x\left(3x+1\right)+\left(x-2\right)\times 4=-8
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x,x^{2}-2x.
3x^{2}+x+\left(x-2\right)\times 4=-8
Use the distributive property to multiply x by 3x+1.
3x^{2}+x+4x-8=-8
Use the distributive property to multiply x-2 by 4.
3x^{2}+5x-8=-8
Combine x and 4x to get 5x.
3x^{2}+5x=-8+8
Add 8 to both sides.
3x^{2}+5x=0
Add -8 and 8 to get 0.
\frac{3x^{2}+5x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\frac{5}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{5}{3}x=0
Divide 0 by 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{5}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{5}{6} x+\frac{5}{6}=-\frac{5}{6}
Simplify.
x=0 x=-\frac{5}{3}
Subtract \frac{5}{6} from both sides of the equation.
x=-\frac{5}{3}
Variable x cannot be equal to 0.