Solve for t
t=\frac{3}{7}\approx 0.428571429
Share
Copied to clipboard
7\left(3t+1\right)-16\left(2t-3\right)=14\left(t+3\right)+8\left(3t-1\right)
Multiply both sides of the equation by 112, the least common multiple of 16,7,8,14.
21t+7-16\left(2t-3\right)=14\left(t+3\right)+8\left(3t-1\right)
Use the distributive property to multiply 7 by 3t+1.
21t+7-32t+48=14\left(t+3\right)+8\left(3t-1\right)
Use the distributive property to multiply -16 by 2t-3.
-11t+7+48=14\left(t+3\right)+8\left(3t-1\right)
Combine 21t and -32t to get -11t.
-11t+55=14\left(t+3\right)+8\left(3t-1\right)
Add 7 and 48 to get 55.
-11t+55=14t+42+8\left(3t-1\right)
Use the distributive property to multiply 14 by t+3.
-11t+55=14t+42+24t-8
Use the distributive property to multiply 8 by 3t-1.
-11t+55=38t+42-8
Combine 14t and 24t to get 38t.
-11t+55=38t+34
Subtract 8 from 42 to get 34.
-11t+55-38t=34
Subtract 38t from both sides.
-49t+55=34
Combine -11t and -38t to get -49t.
-49t=34-55
Subtract 55 from both sides.
-49t=-21
Subtract 55 from 34 to get -21.
t=\frac{-21}{-49}
Divide both sides by -49.
t=\frac{3}{7}
Reduce the fraction \frac{-21}{-49} to lowest terms by extracting and canceling out -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}