Solve for r
r=6
Share
Copied to clipboard
3r-3+\left(r-3\right)\times 3=\left(r+6\right)\times 2
Variable r cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by \left(r-3\right)\left(r+6\right), the least common multiple of r^{2}+3r-18,r+6,r-3.
3r-3+3r-9=\left(r+6\right)\times 2
Use the distributive property to multiply r-3 by 3.
6r-3-9=\left(r+6\right)\times 2
Combine 3r and 3r to get 6r.
6r-12=\left(r+6\right)\times 2
Subtract 9 from -3 to get -12.
6r-12=2r+12
Use the distributive property to multiply r+6 by 2.
6r-12-2r=12
Subtract 2r from both sides.
4r-12=12
Combine 6r and -2r to get 4r.
4r=12+12
Add 12 to both sides.
4r=24
Add 12 and 12 to get 24.
r=\frac{24}{4}
Divide both sides by 4.
r=6
Divide 24 by 4 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}