Evaluate
\frac{6\times \left(\frac{p}{r}\right)^{2}s^{4}}{q^{3}}
Differentiate w.r.t. r
-\frac{12p^{2}s^{4}}{\left(qr\right)^{3}}
Share
Copied to clipboard
\frac{3ps\times 12p^{3}q}{4pqr\times 3pq^{2}}\times \frac{14s^{3}}{7qr}
Divide \frac{3ps}{4pqr} by \frac{3pq^{2}}{12p^{3}q} by multiplying \frac{3ps}{4pqr} by the reciprocal of \frac{3pq^{2}}{12p^{3}q}.
\frac{3sp^{2}}{rq^{2}}\times \frac{14s^{3}}{7qr}
Cancel out 3\times 4ppq in both numerator and denominator.
\frac{3sp^{2}}{rq^{2}}\times \frac{2s^{3}}{qr}
Cancel out 7 in both numerator and denominator.
\frac{3sp^{2}\times 2s^{3}}{rq^{2}qr}
Multiply \frac{3sp^{2}}{rq^{2}} times \frac{2s^{3}}{qr} by multiplying numerator times numerator and denominator times denominator.
\frac{3s^{4}p^{2}\times 2}{rq^{2}qr}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{3s^{4}p^{2}\times 2}{r^{2}q^{2}q}
Multiply r and r to get r^{2}.
\frac{3s^{4}p^{2}\times 2}{r^{2}q^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{6s^{4}p^{2}}{r^{2}q^{3}}
Multiply 3 and 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}