Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3i\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-2i.
\frac{3i\left(4-2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3i\left(4-2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3i\times 4+3\left(-2\right)i^{2}}{20}
Multiply 3i times 4-2i.
\frac{3i\times 4+3\left(-2\right)\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{6+12i}{20}
Do the multiplications in 3i\times 4+3\left(-2\right)\left(-1\right). Reorder the terms.
\frac{3}{10}+\frac{3}{5}i
Divide 6+12i by 20 to get \frac{3}{10}+\frac{3}{5}i.
Re(\frac{3i\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)})
Multiply both numerator and denominator of \frac{3i}{4+2i} by the complex conjugate of the denominator, 4-2i.
Re(\frac{3i\left(4-2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{3i\left(4-2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3i\times 4+3\left(-2\right)i^{2}}{20})
Multiply 3i times 4-2i.
Re(\frac{3i\times 4+3\left(-2\right)\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{6+12i}{20})
Do the multiplications in 3i\times 4+3\left(-2\right)\left(-1\right). Reorder the terms.
Re(\frac{3}{10}+\frac{3}{5}i)
Divide 6+12i by 20 to get \frac{3}{10}+\frac{3}{5}i.
\frac{3}{10}
The real part of \frac{3}{10}+\frac{3}{5}i is \frac{3}{10}.