Solve for f
f=\frac{7h}{2}+18
Solve for h
h=\frac{2\left(f-18\right)}{7}
Share
Copied to clipboard
4\left(3f-5\right)-7\left(2f-h\right)=-56
Multiply both sides of the equation by 28, the least common multiple of 7,4.
12f-20-7\left(2f-h\right)=-56
Use the distributive property to multiply 4 by 3f-5.
12f-20-14f+7h=-56
Use the distributive property to multiply -7 by 2f-h.
-2f-20+7h=-56
Combine 12f and -14f to get -2f.
-2f+7h=-56+20
Add 20 to both sides.
-2f+7h=-36
Add -56 and 20 to get -36.
-2f=-36-7h
Subtract 7h from both sides.
-2f=-7h-36
The equation is in standard form.
\frac{-2f}{-2}=\frac{-7h-36}{-2}
Divide both sides by -2.
f=\frac{-7h-36}{-2}
Dividing by -2 undoes the multiplication by -2.
f=\frac{7h}{2}+18
Divide -36-7h by -2.
4\left(3f-5\right)-7\left(2f-h\right)=-56
Multiply both sides of the equation by 28, the least common multiple of 7,4.
12f-20-7\left(2f-h\right)=-56
Use the distributive property to multiply 4 by 3f-5.
12f-20-14f+7h=-56
Use the distributive property to multiply -7 by 2f-h.
-2f-20+7h=-56
Combine 12f and -14f to get -2f.
-20+7h=-56+2f
Add 2f to both sides.
7h=-56+2f+20
Add 20 to both sides.
7h=-36+2f
Add -56 and 20 to get -36.
7h=2f-36
The equation is in standard form.
\frac{7h}{7}=\frac{2f-36}{7}
Divide both sides by 7.
h=\frac{2f-36}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}