Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)}-\frac{2a}{a-3}
Factor a^{2}-9.
\frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)}-\frac{2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and a-3 is \left(a-3\right)\left(a+3\right). Multiply \frac{2a}{a-3} times \frac{a+3}{a+3}.
\frac{3a^{2}+6a-2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)} and \frac{2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+6a-2a^{2}-6a}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in 3a^{2}+6a-2a\left(a+3\right).
\frac{a^{2}}{\left(a-3\right)\left(a+3\right)}
Combine like terms in 3a^{2}+6a-2a^{2}-6a.
\frac{a^{2}}{a^{2}-9}
Expand \left(a-3\right)\left(a+3\right).
\frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)}-\frac{2a}{a-3}
Factor a^{2}-9.
\frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)}-\frac{2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and a-3 is \left(a-3\right)\left(a+3\right). Multiply \frac{2a}{a-3} times \frac{a+3}{a+3}.
\frac{3a^{2}+6a-2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{3a^{2}+6a}{\left(a-3\right)\left(a+3\right)} and \frac{2a\left(a+3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+6a-2a^{2}-6a}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in 3a^{2}+6a-2a\left(a+3\right).
\frac{a^{2}}{\left(a-3\right)\left(a+3\right)}
Combine like terms in 3a^{2}+6a-2a^{2}-6a.
\frac{a^{2}}{a^{2}-9}
Expand \left(a-3\right)\left(a+3\right).