Evaluate
-\frac{2\left(2a^{2}-a-14\right)}{\left(a-2\right)\left(a^{2}-36\right)}
Expand
-\frac{2\left(2a^{2}-a-14\right)}{\left(a-2\right)\left(a^{2}-36\right)}
Share
Copied to clipboard
\frac{3a+2}{\left(a-6\right)\left(-a-6\right)}-\frac{a-4}{\left(a-6\right)\left(a-2\right)}
Factor 36-a^{2}. Factor a^{2}-8a+12.
\frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}-\frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-6\right)\left(-a-6\right) and \left(a-6\right)\left(a-2\right) is \left(a-6\right)\left(a-2\right)\left(-a-6\right). Multiply \frac{3a+2}{\left(a-6\right)\left(-a-6\right)} times \frac{a-2}{a-2}. Multiply \frac{a-4}{\left(a-6\right)\left(a-2\right)} times \frac{-a-6}{-a-6}.
\frac{\left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Since \frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} and \frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-6a+2a-4+a^{2}+6a-4a-24}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Do the multiplications in \left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right).
\frac{4a^{2}-2a-28}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Combine like terms in 3a^{2}-6a+2a-4+a^{2}+6a-4a-24.
\frac{4a^{2}-2a-28}{-a^{3}+2a^{2}+36a-72}
Expand \left(a-6\right)\left(a-2\right)\left(-a-6\right).
\frac{3a+2}{\left(a-6\right)\left(-a-6\right)}-\frac{a-4}{\left(a-6\right)\left(a-2\right)}
Factor 36-a^{2}. Factor a^{2}-8a+12.
\frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}-\frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-6\right)\left(-a-6\right) and \left(a-6\right)\left(a-2\right) is \left(a-6\right)\left(a-2\right)\left(-a-6\right). Multiply \frac{3a+2}{\left(a-6\right)\left(-a-6\right)} times \frac{a-2}{a-2}. Multiply \frac{a-4}{\left(a-6\right)\left(a-2\right)} times \frac{-a-6}{-a-6}.
\frac{\left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Since \frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} and \frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-6a+2a-4+a^{2}+6a-4a-24}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Do the multiplications in \left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right).
\frac{4a^{2}-2a-28}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Combine like terms in 3a^{2}-6a+2a-4+a^{2}+6a-4a-24.
\frac{4a^{2}-2a-28}{-a^{3}+2a^{2}+36a-72}
Expand \left(a-6\right)\left(a-2\right)\left(-a-6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}