Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a+2}{\left(a-6\right)\left(-a-6\right)}-\frac{a-4}{\left(a-6\right)\left(a-2\right)}
Factor 36-a^{2}. Factor a^{2}-8a+12.
\frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}-\frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-6\right)\left(-a-6\right) and \left(a-6\right)\left(a-2\right) is \left(a-6\right)\left(a-2\right)\left(-a-6\right). Multiply \frac{3a+2}{\left(a-6\right)\left(-a-6\right)} times \frac{a-2}{a-2}. Multiply \frac{a-4}{\left(a-6\right)\left(a-2\right)} times \frac{-a-6}{-a-6}.
\frac{\left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Since \frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} and \frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-6a+2a-4+a^{2}+6a-4a-24}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Do the multiplications in \left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right).
\frac{4a^{2}-2a-28}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Combine like terms in 3a^{2}-6a+2a-4+a^{2}+6a-4a-24.
\frac{4a^{2}-2a-28}{-a^{3}+2a^{2}+36a-72}
Expand \left(a-6\right)\left(a-2\right)\left(-a-6\right).
\frac{3a+2}{\left(a-6\right)\left(-a-6\right)}-\frac{a-4}{\left(a-6\right)\left(a-2\right)}
Factor 36-a^{2}. Factor a^{2}-8a+12.
\frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}-\frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-6\right)\left(-a-6\right) and \left(a-6\right)\left(a-2\right) is \left(a-6\right)\left(a-2\right)\left(-a-6\right). Multiply \frac{3a+2}{\left(a-6\right)\left(-a-6\right)} times \frac{a-2}{a-2}. Multiply \frac{a-4}{\left(a-6\right)\left(a-2\right)} times \frac{-a-6}{-a-6}.
\frac{\left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Since \frac{\left(3a+2\right)\left(a-2\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} and \frac{\left(a-4\right)\left(-a-6\right)}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-6a+2a-4+a^{2}+6a-4a-24}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Do the multiplications in \left(3a+2\right)\left(a-2\right)-\left(a-4\right)\left(-a-6\right).
\frac{4a^{2}-2a-28}{\left(a-6\right)\left(a-2\right)\left(-a-6\right)}
Combine like terms in 3a^{2}-6a+2a-4+a^{2}+6a-4a-24.
\frac{4a^{2}-2a-28}{-a^{3}+2a^{2}+36a-72}
Expand \left(a-6\right)\left(a-2\right)\left(-a-6\right).